Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{1}{-3z^3+3z^4}+\frac{1}{-3+3z}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{z^3-1}{3z^4-3z^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{z^2+z+1}{3z^3}\end{aligned} $$ | |
| ① | Add $ \dfrac{-1}{-3z^3+3z^4} $ and $ \dfrac{1}{-3+3z} $ to get $ \dfrac{ \color{purple}{ z^3-1 } }{ 3z^4-3z^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Simplify $ \dfrac{z^3-1}{3z^4-3z^3} $ to $ \dfrac{z^2+z+1}{3z^3} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{z-1}$. $$ \begin{aligned} \frac{z^3-1}{3z^4-3z^3} & =\frac{ \left( z^2+z+1 \right) \cdot \color{blue}{ \left( z-1 \right) }}{ 3z^3 \cdot \color{blue}{ \left( z-1 \right) }} = \\[1ex] &= \frac{z^2+z+1}{3z^3} \end{aligned} $$ |