Tap the blue circles to see an explanation.
| $$ \begin{aligned}-0.001707(x+8)(x+7)(x-1)(x-5)(x-5)& \xlongequal{ }-(0x+0)(x+7)(x-1)(x-5)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ }-(0x^2+0x+0x+0)(x-1)(x-5)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ }-0(x-1)(x-5)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ }-(0x+0)(x-5)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ }-(0x^2+0x+0x+0)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ }-0(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(0x+0) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}0x+0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{0} $ by $ \left( x-5\right) $ $$ \color{blue}{0} \cdot \left( x-5\right) = 0x0 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(0x0 \right) = 0x0 $$ |
| ③ | Combine like terms: $$ 0 = 0 $$ |