Tap the blue circles to see an explanation.
| $$ \begin{aligned}-2k(-2k^2+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(-4k^3+6k) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4k^3-6k\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2k} $ by $ \left( -2k^2+3\right) $ $$ \color{blue}{2k} \cdot \left( -2k^2+3\right) = -4k^3+6k $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-4k^3+6k \right) = 4k^3-6k $$ |