Tap the blue circles to see an explanation.
| $$ \begin{aligned}-(x-2)(x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(x^2+3x-2x-6) \xlongequal{ } \\[1 em] & \xlongequal{ }-(x^2+x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^2-x+6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x+3\right) = x^2+3x-2x-6 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(x^2+x-6 \right) = -x^2-x+6 $$ |