Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{x^3}{4}+10x^5-5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{40x^5-x^3}{4}-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{40x^5-x^3-20}{4}\end{aligned} $$ | |
| ① | Add $ \dfrac{-x^3}{4} $ and $ 10x^5 $ to get $ \dfrac{ \color{purple}{ 40x^5-x^3 } }{ 4 }$. Step 1: Write $ 10x^5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $5$ from $ \dfrac{40x^5-x^3}{4} $ to get $ \dfrac{ \color{purple}{ 40x^5-x^3-20 } }{ 4 }$. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |