Tap the blue circles to see an explanation.
| $$ \begin{aligned}-(2x+1)(3x^2+4x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(6x^3+8x^2+4x+3x^2+4x+2) \xlongequal{ } \\[1 em] & \xlongequal{ }-(6x^3+11x^2+8x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6x^3-11x^2-8x-2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2x+1}\right) $ by each term in $ \left( 3x^2+4x+2\right) $. $$ \left( \color{blue}{2x+1}\right) \cdot \left( 3x^2+4x+2\right) = 6x^3+8x^2+4x+3x^2+4x+2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(6x^3+11x^2+8x+2 \right) = -6x^3-11x^2-8x-2 $$ |