Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{x-2.5}{2}(8x-20)+\frac{25}{6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{8x^2-36x+40}{2}+\frac{25}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-24x^2+108x-95}{6}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{x-2}{2} $ by $ 8x-20 $ to get $ \dfrac{8x^2-36x+40}{2} $. Step 1: Write $ 8x-20 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{2} \cdot 8x-20 & \xlongequal{\text{Step 1}} \frac{x-2}{2} \cdot \frac{8x-20}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( 8x-20 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^2-20x-16x+40 }{ 2 } = \frac{8x^2-36x+40}{2} \end{aligned} $$ |
| ② | Add $ \dfrac{-8x^2+36x-40}{2} $ and $ \dfrac{25}{6} $ to get $ \dfrac{ \color{purple}{ -24x^2+108x-95 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |