Tap the blue circles to see an explanation.
| $$ \begin{aligned}(a-b)b+bb& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(a-b)b+b^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}ab-b^2+b^2 \xlongequal{ } \\[1 em] & \xlongequal{ }ab -\cancel{b^2}+ \cancel{b^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}ab\end{aligned} $$ | |
| ① | $$ b b = b^{1 + 1} = b^2 $$ |
| ② | $$ \left( \color{blue}{a-b}\right) \cdot b = ab-b^2 $$ |
| ③ | Combine like terms: $$ ab \, \color{blue}{ -\cancel{b^2}} \,+ \, \color{blue}{ \cancel{b^2}} \, = ab $$ |