Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1+\frac{3}{s}qrt\cdot10h}{2+\frac{1}{s}qrt\cdot10h}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1+\frac{3q}{s}rt\cdot10h}{2+\frac{q}{s}rt\cdot10h} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1+\frac{3qr}{s}t\cdot10h}{2+\frac{qr}{s}t\cdot10h} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{1+\frac{3qrt}{s}\cdot10h}{2+\frac{qrt}{s}\cdot10h} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{1+\frac{30qrt}{s}h}{2+\frac{10qrt}{s}h} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{1+\frac{30hqrt}{s}}{2+\frac{10hqrt}{s}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{\frac{30hqrt+s}{s}}{\frac{10hqrt+2s}{s}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{30hqrt+s}{10hqrt+2s}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{s} $ by $ q $ to get $ \dfrac{ 3q }{ s } $. Step 1: Write $ q $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{s} \cdot q & \xlongequal{\text{Step 1}} \frac{3}{s} \cdot \frac{q}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot q }{ s \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3q }{ s } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{s} $ by $ q $ to get $ \dfrac{ q }{ s } $. Step 1: Write $ q $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{s} \cdot q & \xlongequal{\text{Step 1}} \frac{1}{s} \cdot \frac{q}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot q }{ s \cdot 1 } \xlongequal{\text{Step 3}} \frac{ q }{ s } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{3q}{s} $ by $ r $ to get $ \dfrac{ 3qr }{ s } $. Step 1: Write $ r $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3q}{s} \cdot r & \xlongequal{\text{Step 1}} \frac{3q}{s} \cdot \frac{r}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3q \cdot r }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3qr }{ s } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{q}{s} $ by $ r $ to get $ \dfrac{ qr }{ s } $. Step 1: Write $ r $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{q}{s} \cdot r & \xlongequal{\text{Step 1}} \frac{q}{s} \cdot \frac{r}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ q \cdot r }{ s \cdot 1 } \xlongequal{\text{Step 3}} \frac{ qr }{ s } \end{aligned} $$ |
| ⑤ | Multiply $ \dfrac{3qr}{s} $ by $ t $ to get $ \dfrac{ 3qrt }{ s } $. Step 1: Write $ t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3qr}{s} \cdot t & \xlongequal{\text{Step 1}} \frac{3qr}{s} \cdot \frac{t}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3qr \cdot t }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3qrt }{ s } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{qr}{s} $ by $ t $ to get $ \dfrac{ qrt }{ s } $. Step 1: Write $ t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{qr}{s} \cdot t & \xlongequal{\text{Step 1}} \frac{qr}{s} \cdot \frac{t}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ qr \cdot t }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ qrt }{ s } \end{aligned} $$ |
| ⑦ | Multiply $ \dfrac{3qrt}{s} $ by $ 10 $ to get $ \dfrac{ 30qrt }{ s } $. Step 1: Write $ 10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3qrt}{s} \cdot 10 & \xlongequal{\text{Step 1}} \frac{3qrt}{s} \cdot \frac{10}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3qrt \cdot 10 }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 30qrt }{ s } \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{qrt}{s} $ by $ 10 $ to get $ \dfrac{ 10qrt }{ s } $. Step 1: Write $ 10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{qrt}{s} \cdot 10 & \xlongequal{\text{Step 1}} \frac{qrt}{s} \cdot \frac{10}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ qrt \cdot 10 }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10qrt }{ s } \end{aligned} $$ |
| ⑨ | Multiply $ \dfrac{30qrt}{s} $ by $ h $ to get $ \dfrac{ 30hqrt }{ s } $. Step 1: Write $ h $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{30qrt}{s} \cdot h & \xlongequal{\text{Step 1}} \frac{30qrt}{s} \cdot \frac{h}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 30qrt \cdot h }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 30hqrt }{ s } \end{aligned} $$ |
| ⑩ | Multiply $ \dfrac{10qrt}{s} $ by $ h $ to get $ \dfrac{ 10hqrt }{ s } $. Step 1: Write $ h $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{10qrt}{s} \cdot h & \xlongequal{\text{Step 1}} \frac{10qrt}{s} \cdot \frac{h}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 10qrt \cdot h }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10hqrt }{ s } \end{aligned} $$ |
| ⑪ | Add $1$ and $ \dfrac{30hqrt}{s} $ to get $ \dfrac{ \color{purple}{ 30hqrt+s } }{ s }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑫ | Add $2$ and $ \dfrac{10hqrt}{s} $ to get $ \dfrac{ \color{purple}{ 10hqrt+2s } }{ s }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑬ | Divide $ \dfrac{30hqrt+s}{s} $ by $ \dfrac{10hqrt+2s}{s} $ to get $ \dfrac{ 30hqrt+s }{ 10hqrt+2s } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ s } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{30hqrt+s}{s} }{ \frac{\color{blue}{10hqrt+2s}}{\color{blue}{s}} } & \xlongequal{\text{Step 1}} \frac{30hqrt+s}{s} \cdot \frac{\color{blue}{s}}{\color{blue}{10hqrt+2s}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{30hqrt+s}{\color{red}{1}} \cdot \frac{\color{red}{1}}{10hqrt+2s} \xlongequal{\text{Step 3}} \frac{ \left( 30hqrt+s \right) \cdot 1 }{ 1 \cdot \left( 10hqrt+2s \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 30hqrt+s }{ 10hqrt+2s } \end{aligned} $$ |