Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{z+6}{(z+3)(z+4)}-\frac{3}{z+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{z+6}{z^2+4z+3z+12}-\frac{3}{z+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{z+6}{z^2+7z+12}-\frac{3}{z+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2z-6}{z^2+7z+12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{2}{z+4}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{z+3}\right) $ by each term in $ \left( z+4\right) $. $$ \left( \color{blue}{z+3}\right) \cdot \left( z+4\right) = z^2+4z+3z+12 $$ |
| ② | Combine like terms: $$ z^2+ \color{blue}{4z} + \color{blue}{3z} +12 = z^2+ \color{blue}{7z} +12 $$ |
| ③ | Subtract $ \dfrac{3}{z+3} $ from $ \dfrac{z+6}{z^2+7z+12} $ to get $ \dfrac{ \color{purple}{ -2z-6 } }{ z^2+7z+12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Simplify $ \dfrac{-2z-6}{z^2+7z+12} $ to $ \dfrac{-2}{z+4} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{z+3}$. $$ \begin{aligned} \frac{-2z-6}{z^2+7z+12} & =\frac{ \left( -2 \right) \cdot \color{blue}{ \left( z+3 \right) }}{ \left( z+4 \right) \cdot \color{blue}{ \left( z+3 \right) }} = \\[1ex] &= \frac{-2}{z+4} \end{aligned} $$ |