Tap the blue circles to see an explanation.
| $$ \begin{aligned}(z+1)(z^6+6z^5+31z^4-12z^3+31z^2+6z+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}z^7+7z^6+37z^5+19z^4+19z^3+37z^2+7z+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{z+1}\right) $ by each term in $ \left( z^6+6z^5+31z^4-12z^3+31z^2+6z+1\right) $. $$ \left( \color{blue}{z+1}\right) \cdot \left( z^6+6z^5+31z^4-12z^3+31z^2+6z+1\right) = \\ = z^7+6z^6+31z^5-12z^4+31z^3+6z^2+z+z^6+6z^5+31z^4-12z^3+31z^2+6z+1 $$ |
| ② | Combine like terms: $$ z^7+ \color{blue}{6z^6} + \color{red}{31z^5} \color{green}{-12z^4} + \color{orange}{31z^3} + \color{blue}{6z^2} + \color{red}{z} + \color{blue}{z^6} + \color{red}{6z^5} + \color{green}{31z^4} \color{orange}{-12z^3} + \color{blue}{31z^2} + \color{red}{6z} +1 = \\ = z^7+ \color{blue}{7z^6} + \color{red}{37z^5} + \color{green}{19z^4} + \color{orange}{19z^3} + \color{blue}{37z^2} + \color{red}{7z} +1 $$ |