Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+y-4)(x+y-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+2xy+y^2-6x-6y+8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+y-4}\right) $ by each term in $ \left( x+y-2\right) $. $$ \left( \color{blue}{x+y-4}\right) \cdot \left( x+y-2\right) = x^2+xy-2x+xy+y^2-2y-4x-4y+8 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{xy} \color{red}{-2x} + \color{blue}{xy} +y^2 \color{green}{-2y} \color{red}{-4x} \color{green}{-4y} +8 = x^2+ \color{blue}{2xy} +y^2 \color{red}{-6x} \color{green}{-6y} +8 $$ |