Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+8)(x+1)(x-6)^2(x-13)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+8)(x+1)(x^2-12x+36)(x-13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x+8x+8)(x^2-12x+36)(x-13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^2+9x+8)(x^2-12x+36)(x-13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(x^4-3x^3-64x^2+228x+288)(x-13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}x^5-16x^4-25x^3+1060x^2-2676x-3744\end{aligned} $$ | |
| ① | Find $ \left(x-6\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 6 }$. $$ \begin{aligned}\left(x-6\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 6 + \color{red}{6^2} = x^2-12x+36\end{aligned} $$ |
| ② | Multiply each term of $ \left( \color{blue}{x+8}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x+8}\right) \cdot \left( x+1\right) = x^2+x+8x+8 $$ |
| ③ | Combine like terms: $$ x^2+ \color{blue}{x} + \color{blue}{8x} +8 = x^2+ \color{blue}{9x} +8 $$ |
| ④ | Multiply each term of $ \left( \color{blue}{x^2+9x+8}\right) $ by each term in $ \left( x^2-12x+36\right) $. $$ \left( \color{blue}{x^2+9x+8}\right) \cdot \left( x^2-12x+36\right) = x^4-12x^3+36x^2+9x^3-108x^2+324x+8x^2-96x+288 $$ |
| ⑤ | Combine like terms: $$ x^4 \color{blue}{-12x^3} + \color{red}{36x^2} + \color{blue}{9x^3} \color{green}{-108x^2} + \color{orange}{324x} + \color{green}{8x^2} \color{orange}{-96x} +288 = \\ = x^4 \color{blue}{-3x^3} \color{green}{-64x^2} + \color{orange}{228x} +288 $$ |
| ⑥ | Multiply each term of $ \left( \color{blue}{x^4-3x^3-64x^2+228x+288}\right) $ by each term in $ \left( x-13\right) $. $$ \left( \color{blue}{x^4-3x^3-64x^2+228x+288}\right) \cdot \left( x-13\right) = \\ = x^5-13x^4-3x^4+39x^3-64x^3+832x^2+228x^2-2964x+288x-3744 $$ |
| ⑦ | Combine like terms: $$ x^5 \color{blue}{-13x^4} \color{blue}{-3x^4} + \color{red}{39x^3} \color{red}{-64x^3} + \color{green}{832x^2} + \color{green}{228x^2} \color{orange}{-2964x} + \color{orange}{288x} -3744 = \\ = x^5 \color{blue}{-16x^4} \color{red}{-25x^3} + \color{green}{1060x^2} \color{orange}{-2676x} -3744 $$ |