Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+8)(x-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-8x+8x-64 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2 -\cancel{8x}+ \cancel{8x}-64 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-64\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+8}\right) $ by each term in $ \left( x-8\right) $. $$ \left( \color{blue}{x+8}\right) \cdot \left( x-8\right) = x^2 -\cancel{8x}+ \cancel{8x}-64 $$ |
| ② | Combine like terms: $$ x^2 \, \color{blue}{ -\cancel{8x}} \,+ \, \color{blue}{ \cancel{8x}} \,-64 = x^2-64 $$ |