Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+5)(x+2)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+2x+5x+10)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+7x+10)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+x^2+7x^2+7x+10x+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3+8x^2+17x+10\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+5}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x+5}\right) \cdot \left( x+2\right) = x^2+2x+5x+10 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{2x} + \color{blue}{5x} +10 = x^2+ \color{blue}{7x} +10 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+7x+10}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^2+7x+10}\right) \cdot \left( x+1\right) = x^3+x^2+7x^2+7x+10x+10 $$ |
| ④ | Combine like terms: $$ x^3+ \color{blue}{x^2} + \color{blue}{7x^2} + \color{red}{7x} + \color{red}{10x} +10 = x^3+ \color{blue}{8x^2} + \color{red}{17x} +10 $$ |