Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+5)(3x^2+7x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^3+7x^2+3x+15x^2+35x+15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^3+22x^2+38x+15\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+5}\right) $ by each term in $ \left( 3x^2+7x+3\right) $. $$ \left( \color{blue}{x+5}\right) \cdot \left( 3x^2+7x+3\right) = 3x^3+7x^2+3x+15x^2+35x+15 $$ |
| ② | Combine like terms: $$ 3x^3+ \color{blue}{7x^2} + \color{red}{3x} + \color{blue}{15x^2} + \color{red}{35x} +15 = 3x^3+ \color{blue}{22x^2} + \color{red}{38x} +15 $$ |