Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+4)\cdot2+3(x+4)+7& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x+8+3x+12+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x+20+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5x+27\end{aligned} $$ | |
| ① | $$ \left( \color{blue}{x+4}\right) \cdot 2 = 2x+8 $$Multiply $ \color{blue}{3} $ by $ \left( x+4\right) $ $$ \color{blue}{3} \cdot \left( x+4\right) = 3x+12 $$ |
| ② | Combine like terms: $$ \color{blue}{2x} + \color{red}{8} + \color{blue}{3x} + \color{red}{12} = \color{blue}{5x} + \color{red}{20} $$ |
| ③ | Combine like terms: $$ 5x+ \color{blue}{20} + \color{blue}{7} = 5x+ \color{blue}{27} $$ |