Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+4)\cdot2-2(x+4)+5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x+8-(2x+8)+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x+8-2x-8+5 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{2x}+ \cancel{8} -\cancel{2x} -\cancel{8}+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5\end{aligned} $$ | |
| ① | $$ \left( \color{blue}{x+4}\right) \cdot 2 = 2x+8 $$Multiply $ \color{blue}{2} $ by $ \left( x+4\right) $ $$ \color{blue}{2} \cdot \left( x+4\right) = 2x+8 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x+8 \right) = -2x-8 $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ \cancel{2x}} \,+ \, \color{green}{ \cancel{8}} \, \, \color{blue}{ -\cancel{2x}} \, \, \color{blue}{ -\cancel{8}} \,+ \color{blue}{5} = \color{blue}{5} $$ |