Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+4)(x-3)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-3x+4x-12)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x-12)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+x^2+x^2+x-12x-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3+2x^2-11x-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+4}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x+4}\right) \cdot \left( x-3\right) = x^2-3x+4x-12 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-3x} + \color{blue}{4x} -12 = x^2+ \color{blue}{x} -12 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+x-12}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^2+x-12}\right) \cdot \left( x+1\right) = x^3+x^2+x^2+x-12x-12 $$ |
| ④ | Combine like terms: $$ x^3+ \color{blue}{x^2} + \color{blue}{x^2} + \color{red}{x} \color{red}{-12x} -12 = x^3+ \color{blue}{2x^2} \color{red}{-11x} -12 $$ |