Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+4)(3x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2-4x+12x-16 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+8x-16\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+4}\right) $ by each term in $ \left( 3x-4\right) $. $$ \left( \color{blue}{x+4}\right) \cdot \left( 3x-4\right) = 3x^2-4x+12x-16 $$ |
| ② | Combine like terms: $$ 3x^2 \color{blue}{-4x} + \color{blue}{12x} -16 = 3x^2+ \color{blue}{8x} -16 $$ |