Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+3h)^2-3(x+2h)^2+3(x+h)^2-x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+6hx+9h^2-3(x^2+4hx+4h^2)+3(x^2+2hx+h^2)-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+6hx+9h^2-(3x^2+12hx+12h^2)+3x^2+6hx+3h^2-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^2+6hx+9h^2-3x^2-12hx-12h^2+3x^2+6hx+3h^2-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-3h^2-6hx-2x^2+3x^2+6hx+3h^2-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^2-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{x^2} -\cancel{x^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}0\end{aligned} $$ | |
| ① | Find $ \left(x+3h\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 3h }$. $$ \begin{aligned}\left(x+3h\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 3h + \color{red}{\left( 3h \right)^2} = x^2+6hx+9h^2\end{aligned} $$Find $ \left(x+2h\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2h }$. $$ \begin{aligned}\left(x+2h\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 2h + \color{red}{\left( 2h \right)^2} = x^2+4hx+4h^2\end{aligned} $$Find $ \left(x+h\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ h }$. $$ \begin{aligned}\left(x+h\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot h + \color{red}{h^2} = x^2+2hx+h^2\end{aligned} $$ |
| ② | Multiply $ \color{blue}{3} $ by $ \left( x^2+4hx+4h^2\right) $ $$ \color{blue}{3} \cdot \left( x^2+4hx+4h^2\right) = 3x^2+12hx+12h^2 $$Multiply $ \color{blue}{3} $ by $ \left( x^2+2hx+h^2\right) $ $$ \color{blue}{3} \cdot \left( x^2+2hx+h^2\right) = 3x^2+6hx+3h^2 $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x^2+12hx+12h^2 \right) = -3x^2-12hx-12h^2 $$ |
| ④ | Combine like terms: $$ \color{blue}{x^2} + \color{red}{6hx} + \color{green}{9h^2} \color{blue}{-3x^2} \color{red}{-12hx} \color{green}{-12h^2} = \color{green}{-3h^2} \color{red}{-6hx} \color{blue}{-2x^2} $$ |
| ⑤ | Combine like terms: $$ \, \color{blue}{ -\cancel{3h^2}} \, \, \color{green}{ -\cancel{6hx}} \, \color{blue}{-2x^2} + \color{blue}{3x^2} + \, \color{green}{ \cancel{6hx}} \,+ \, \color{blue}{ \cancel{3h^2}} \, = \color{blue}{x^2} $$ |
| ⑥ | Combine like terms: $$ \, \color{blue}{ \cancel{x^2}} \, \, \color{blue}{ -\cancel{x^2}} \, = 0 $$ |