Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+3)(3x\cdot2+7x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+3)(6x+7x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x+3)(13x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}13x^2-5x+39x-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}13x^2+34x-15\end{aligned} $$ | |
| ① | $$ 3 x \cdot 2 = 6 x $$ |
| ② | Combine like terms: $$ \color{blue}{6x} + \color{blue}{7x} -5 = \color{blue}{13x} -5 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x+3}\right) $ by each term in $ \left( 13x-5\right) $. $$ \left( \color{blue}{x+3}\right) \cdot \left( 13x-5\right) = 13x^2-5x+39x-15 $$ |
| ④ | Combine like terms: $$ 13x^2 \color{blue}{-5x} + \color{blue}{39x} -15 = 13x^2+ \color{blue}{34x} -15 $$ |