Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2y+3a)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9a^2+6ax+12ay+x^2+4xy+4y^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2y+3a}\right) $ by each term in $ \left( x+2y+3a\right) $. $$ \left( \color{blue}{x+2y+3a}\right) \cdot \left( x+2y+3a\right) = x^2+2xy+3ax+2xy+4y^2+6ay+3ax+6ay+9a^2 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{2xy} + \color{red}{3ax} + \color{blue}{2xy} +4y^2+ \color{green}{6ay} + \color{red}{3ax} + \color{green}{6ay} +9a^2 = \\ = 9a^2+ \color{red}{6ax} + \color{green}{12ay} +x^2+ \color{blue}{4xy} +4y^2 $$ |