Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)^2-3(x+2)-4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+4x+4-3(x+2)-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+4x+4-(3x+6)-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^2+4x+4-3x-6-4 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2+4x+ \cancel{4}-3x-6 -\cancel{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^2+x-6\end{aligned} $$ | |
| ① | Find $ \left(x+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x+2\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 2 + \color{red}{2^2} = x^2+4x+4\end{aligned} $$ |
| ② | Multiply $ \color{blue}{3} $ by $ \left( x+2\right) $ $$ \color{blue}{3} \cdot \left( x+2\right) = 3x+6 $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x+6 \right) = -3x-6 $$ |
| ④ | Combine like terms: $$ x^2+ \color{blue}{4x} + \, \color{red}{ \cancel{4}} \, \color{blue}{-3x} \color{orange}{-6} \, \color{orange}{ -\cancel{4}} \, = x^2+ \color{blue}{x} \color{orange}{-6} $$ |