| $$ \begin{aligned}\frac{x+2}{4}(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^2-4}{4}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{x+2}{4} $ by $ x-2 $ to get $ \dfrac{x^2-4}{4} $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x+2}{4} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{x+2}{4} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot \left( x-2 \right) }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 -\cancel{2x}+ \cancel{2x}-4 }{ 4 } = \frac{x^2-4}{4} \end{aligned} $$ |