Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+5x+2x+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+7x+10\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+5\right) = x^2+5x+2x+10 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{5x} + \color{blue}{2x} +10 = x^2+ \color{blue}{7x} +10 $$ |