Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(x+1)(2x-3)(2x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+x+2x+2)(2x-3)(2x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+3x+2)(2x-3)(2x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(2x^3-3x^2+6x^2-9x+4x-6)(2x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(2x^3+3x^2-5x-6)(2x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}4x^4-4x^3-25x^2+13x+30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+1\right) = x^2+x+2x+2 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{x} + \color{blue}{2x} +2 = x^2+ \color{blue}{3x} +2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+3x+2}\right) $ by each term in $ \left( 2x-3\right) $. $$ \left( \color{blue}{x^2+3x+2}\right) \cdot \left( 2x-3\right) = 2x^3-3x^2+6x^2-9x+4x-6 $$ |
| ④ | Combine like terms: $$ 2x^3 \color{blue}{-3x^2} + \color{blue}{6x^2} \color{red}{-9x} + \color{red}{4x} -6 = 2x^3+ \color{blue}{3x^2} \color{red}{-5x} -6 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{2x^3+3x^2-5x-6}\right) $ by each term in $ \left( 2x-5\right) $. $$ \left( \color{blue}{2x^3+3x^2-5x-6}\right) \cdot \left( 2x-5\right) = 4x^4-10x^3+6x^3-15x^2-10x^2+25x-12x+30 $$ |
| ⑥ | Combine like terms: $$ 4x^4 \color{blue}{-10x^3} + \color{blue}{6x^3} \color{red}{-15x^2} \color{red}{-10x^2} + \color{green}{25x} \color{green}{-12x} +30 = 4x^4 \color{blue}{-4x^3} \color{red}{-25x^2} + \color{green}{13x} +30 $$ |