Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(x-1)(x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-x+2x-2)(x+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x-2)(x+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+3x^2+x^2+3x-2x-6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3+4x^2+x-6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x-1\right) = x^2-x+2x-2 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-x} + \color{blue}{2x} -2 = x^2+ \color{blue}{x} -2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+x-2}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x^2+x-2}\right) \cdot \left( x+3\right) = x^3+3x^2+x^2+3x-2x-6 $$ |
| ④ | Combine like terms: $$ x^3+ \color{blue}{3x^2} + \color{blue}{x^2} + \color{red}{3x} \color{red}{-2x} -6 = x^3+ \color{blue}{4x^2} + \color{red}{x} -6 $$ |