Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(x-1)(x-2)(x-3)(x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-x+2x-2)(x-2)(x-3)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x-2)(x-2)(x-3)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3-2x^2+x^2-2x-2x+4)(x-3)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^3-x^2-4x+4)(x-3)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}(x^4-4x^3-x^2+16x-12)(x-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}x^5-8x^4+15x^3+20x^2-76x+48\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x-1\right) = x^2-x+2x-2 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-x} + \color{blue}{2x} -2 = x^2+ \color{blue}{x} -2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+x-2}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{x^2+x-2}\right) \cdot \left( x-2\right) = x^3-2x^2+x^2-2x-2x+4 $$ |
| ④ | Combine like terms: $$ x^3 \color{blue}{-2x^2} + \color{blue}{x^2} \color{red}{-2x} \color{red}{-2x} +4 = x^3 \color{blue}{-x^2} \color{red}{-4x} +4 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{x^3-x^2-4x+4}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x^3-x^2-4x+4}\right) \cdot \left( x-3\right) = x^4-3x^3-x^3+3x^2-4x^2+12x+4x-12 $$ |
| ⑥ | Combine like terms: $$ x^4 \color{blue}{-3x^3} \color{blue}{-x^3} + \color{red}{3x^2} \color{red}{-4x^2} + \color{green}{12x} + \color{green}{4x} -12 = x^4 \color{blue}{-4x^3} \color{red}{-x^2} + \color{green}{16x} -12 $$ |
| ⑦ | Multiply each term of $ \left( \color{blue}{x^4-4x^3-x^2+16x-12}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{x^4-4x^3-x^2+16x-12}\right) \cdot \left( x-4\right) = x^5-4x^4-4x^4+16x^3-x^3+4x^2+16x^2-64x-12x+48 $$ |
| ⑧ | Combine like terms: $$ x^5 \color{blue}{-4x^4} \color{blue}{-4x^4} + \color{red}{16x^3} \color{red}{-x^3} + \color{green}{4x^2} + \color{green}{16x^2} \color{orange}{-64x} \color{orange}{-12x} +48 = \\ = x^5 \color{blue}{-8x^4} + \color{red}{15x^3} + \color{green}{20x^2} \color{orange}{-76x} +48 $$ |