Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(x^2+5x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+5x^2-6x+2x^2+10x-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+7x^2+4x-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x^2+5x-6\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x^2+5x-6\right) = x^3+5x^2-6x+2x^2+10x-12 $$ |
| ② | Combine like terms: $$ x^3+ \color{blue}{5x^2} \color{red}{-6x} + \color{blue}{2x^2} + \color{red}{10x} -12 = x^3+ \color{blue}{7x^2} + \color{red}{4x} -12 $$ |