Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(x^2-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3-3x+2x^2-6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+2x^2-3x-6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x^2-3\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x^2-3\right) = x^3-3x+2x^2-6 $$ |
| ② | Combine like terms: $$ x^3+2x^2-3x-6 = x^3+2x^2-3x-6 $$ |