Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2)(3x+1)(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x^2+x+6x+2)(2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3x^2+7x+2)(2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^3+3x^2+14x^2+7x+4x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}6x^3+17x^2+11x+2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( 3x+1\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( 3x+1\right) = 3x^2+x+6x+2 $$ |
| ② | Combine like terms: $$ 3x^2+ \color{blue}{x} + \color{blue}{6x} +2 = 3x^2+ \color{blue}{7x} +2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{3x^2+7x+2}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{3x^2+7x+2}\right) \cdot \left( 2x+1\right) = 6x^3+3x^2+14x^2+7x+4x+2 $$ |
| ④ | Combine like terms: $$ 6x^3+ \color{blue}{3x^2} + \color{blue}{14x^2} + \color{red}{7x} + \color{red}{4x} +2 = 6x^3+ \color{blue}{17x^2} + \color{red}{11x} +2 $$ |