Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+14)(x-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-8x+14x-112 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+6x-112\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+14}\right) $ by each term in $ \left( x-8\right) $. $$ \left( \color{blue}{x+14}\right) \cdot \left( x-8\right) = x^2-8x+14x-112 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-8x} + \color{blue}{14x} -112 = x^2+ \color{blue}{6x} -112 $$ |