Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+13)(x+6)^2(x-4)(x-9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+13)(x^2+12x+36)(x-4)(x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^3+12x^2+36x+13x^2+156x+468)(x-4)(x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+25x^2+192x+468)(x-4)(x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(x^4+21x^3+92x^2-300x-1872)(x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}x^5+12x^4-97x^3-1128x^2+828x+16848\end{aligned} $$ | |
| ① | Find $ \left(x+6\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 6 }$. $$ \begin{aligned}\left(x+6\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 6 + \color{red}{6^2} = x^2+12x+36\end{aligned} $$ |
| ② | Multiply each term of $ \left( \color{blue}{x+13}\right) $ by each term in $ \left( x^2+12x+36\right) $. $$ \left( \color{blue}{x+13}\right) \cdot \left( x^2+12x+36\right) = x^3+12x^2+36x+13x^2+156x+468 $$ |
| ③ | Combine like terms: $$ x^3+ \color{blue}{12x^2} + \color{red}{36x} + \color{blue}{13x^2} + \color{red}{156x} +468 = x^3+ \color{blue}{25x^2} + \color{red}{192x} +468 $$ |
| ④ | Multiply each term of $ \left( \color{blue}{x^3+25x^2+192x+468}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{x^3+25x^2+192x+468}\right) \cdot \left( x-4\right) = x^4-4x^3+25x^3-100x^2+192x^2-768x+468x-1872 $$ |
| ⑤ | Combine like terms: $$ x^4 \color{blue}{-4x^3} + \color{blue}{25x^3} \color{red}{-100x^2} + \color{red}{192x^2} \color{green}{-768x} + \color{green}{468x} -1872 = \\ = x^4+ \color{blue}{21x^3} + \color{red}{92x^2} \color{green}{-300x} -1872 $$ |
| ⑥ | Multiply each term of $ \left( \color{blue}{x^4+21x^3+92x^2-300x-1872}\right) $ by each term in $ \left( x-9\right) $. $$ \left( \color{blue}{x^4+21x^3+92x^2-300x-1872}\right) \cdot \left( x-9\right) = \\ = x^5-9x^4+21x^4-189x^3+92x^3-828x^2-300x^2+2700x-1872x+16848 $$ |
| ⑦ | Combine like terms: $$ x^5 \color{blue}{-9x^4} + \color{blue}{21x^4} \color{red}{-189x^3} + \color{red}{92x^3} \color{green}{-828x^2} \color{green}{-300x^2} + \color{orange}{2700x} \color{orange}{-1872x} +16848 = \\ = x^5+ \color{blue}{12x^4} \color{red}{-97x^3} \color{green}{-1128x^2} + \color{orange}{828x} +16848 $$ |