Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+1)(x+h-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+hx-x+x+h-1 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2+hx -\cancel{x}+ \cancel{x}+h-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}hx+x^2+h-1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+1}\right) $ by each term in $ \left( x+h-1\right) $. $$ \left( \color{blue}{x+1}\right) \cdot \left( x+h-1\right) = x^2+hx -\cancel{x}+ \cancel{x}+h-1 $$ |
| ② | Combine like terms: $$ x^2+hx \, \color{blue}{ -\cancel{x}} \,+ \, \color{blue}{ \cancel{x}} \,+h-1 = hx+x^2+h-1 $$ |