Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+1)(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-2x+x-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-x-2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+1}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{x+1}\right) \cdot \left( x-2\right) = x^2-2x+x-2 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-2x} + \color{blue}{x} -2 = x^2 \color{blue}{-x} -2 $$ |