Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+1)(x-2)(x+4)(3x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-2x+x-2)(x+4)(3x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-x-2)(x+4)(3x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+4x^2-x^2-4x-2x-8)(3x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^3+3x^2-6x-8)(3x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}3x^4+16x^3+3x^2-66x-56\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+1}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{x+1}\right) \cdot \left( x-2\right) = x^2-2x+x-2 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-2x} + \color{blue}{x} -2 = x^2 \color{blue}{-x} -2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2-x-2}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{x^2-x-2}\right) \cdot \left( x+4\right) = x^3+4x^2-x^2-4x-2x-8 $$ |
| ④ | Combine like terms: $$ x^3+ \color{blue}{4x^2} \color{blue}{-x^2} \color{red}{-4x} \color{red}{-2x} -8 = x^3+ \color{blue}{3x^2} \color{red}{-6x} -8 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{x^3+3x^2-6x-8}\right) $ by each term in $ \left( 3x+7\right) $. $$ \left( \color{blue}{x^3+3x^2-6x-8}\right) \cdot \left( 3x+7\right) = 3x^4+7x^3+9x^3+21x^2-18x^2-42x-24x-56 $$ |
| ⑥ | Combine like terms: $$ 3x^4+ \color{blue}{7x^3} + \color{blue}{9x^3} + \color{red}{21x^2} \color{red}{-18x^2} \color{green}{-42x} \color{green}{-24x} -56 = 3x^4+ \color{blue}{16x^3} + \color{red}{3x^2} \color{green}{-66x} -56 $$ |