Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+1)(x^2+2x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+2x^2+3x+x^2+2x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+3x^2+5x+3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+1}\right) $ by each term in $ \left( x^2+2x+3\right) $. $$ \left( \color{blue}{x+1}\right) \cdot \left( x^2+2x+3\right) = x^3+2x^2+3x+x^2+2x+3 $$ |
| ② | Combine like terms: $$ x^3+ \color{blue}{2x^2} + \color{red}{3x} + \color{blue}{x^2} + \color{red}{2x} +3 = x^3+ \color{blue}{3x^2} + \color{red}{5x} +3 $$ |