Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+0)(x-5)x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-5x+0x+0)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-5x)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3-5x^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x0}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{x0}\right) \cdot \left( x-5\right) = x^2-5x0x0 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-5x} \color{blue}{0x} 0 = x^2 \color{blue}{-5x} $$ |
| ③ | $$ \left( \color{blue}{x^2-5x}\right) \cdot x = x^3-5x^2 $$ |