Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-m)^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}m^4-4m^3x+6m^2x^2-4mx^3+x^4\end{aligned} $$ | |
| ① | $$ (x-m)^4 = (x-m)^2 \cdot (x-m)^2 $$ |
| ② | Find $ \left(x-m\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ m }$. $$ \begin{aligned}\left(x-m\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot m + \color{red}{m^2} = x^2-2mx+m^2\end{aligned} $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2-2mx+m^2}\right) $ by each term in $ \left( x^2-2mx+m^2\right) $. $$ \left( \color{blue}{x^2-2mx+m^2}\right) \cdot \left( x^2-2mx+m^2\right) = \\ = x^4-2mx^3+m^2x^2-2mx^3+4m^2x^2-2m^3x+m^2x^2-2m^3x+m^4 $$ |
| ④ | Combine like terms: $$ x^4 \color{blue}{-2mx^3} + \color{red}{m^2x^2} \color{blue}{-2mx^3} + \color{green}{4m^2x^2} \color{orange}{-2m^3x} + \color{green}{m^2x^2} \color{orange}{-2m^3x} +m^4 = \\ = m^4 \color{orange}{-4m^3x} + \color{green}{6m^2x^2} \color{blue}{-4mx^3} +x^4 $$ |