Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-m)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3-3mx^2+3m^2x-m^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-m^3+3m^2x-3mx^2+x^3\end{aligned} $$ | |
| ① | Find $ \left(x-m\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = x $ and $ B = m $. $$ \left(x-m\right)^3 = x^3-3 \cdot x^2 \cdot m + 3 \cdot x \cdot m^2-m^3 = x^3-3mx^2+3m^2x-m^3 $$ |
| ② | Combine like terms: $$ -m^3+3m^2x-3mx^2+x^3 = -m^3+3m^2x-3mx^2+x^3 $$ |