Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-6)(x+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+8x-6x-48 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+2x-48\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-6}\right) $ by each term in $ \left( x+8\right) $. $$ \left( \color{blue}{x-6}\right) \cdot \left( x+8\right) = x^2+8x-6x-48 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{8x} \color{blue}{-6x} -48 = x^2+ \color{blue}{2x} -48 $$ |