Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-6)(2x^2-3x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^3-3x^2+5x-12x^2+18x-30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^3-15x^2+23x-30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-6}\right) $ by each term in $ \left( 2x^2-3x+5\right) $. $$ \left( \color{blue}{x-6}\right) \cdot \left( 2x^2-3x+5\right) = 2x^3-3x^2+5x-12x^2+18x-30 $$ |
| ② | Combine like terms: $$ 2x^3 \color{blue}{-3x^2} + \color{red}{5x} \color{blue}{-12x^2} + \color{red}{18x} -30 = 2x^3 \color{blue}{-15x^2} + \color{red}{23x} -30 $$ |