Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-5)(x^2+6x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+6x^2+4x-5x^2-30x-20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+x^2-26x-20\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-5}\right) $ by each term in $ \left( x^2+6x+4\right) $. $$ \left( \color{blue}{x-5}\right) \cdot \left( x^2+6x+4\right) = x^3+6x^2+4x-5x^2-30x-20 $$ |
| ② | Combine like terms: $$ x^3+ \color{blue}{6x^2} + \color{red}{4x} \color{blue}{-5x^2} \color{red}{-30x} -20 = x^3+ \color{blue}{x^2} \color{red}{-26x} -20 $$ |