Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-5)(3x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+7x-15x-35 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2-8x-35\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-5}\right) $ by each term in $ \left( 3x+7\right) $. $$ \left( \color{blue}{x-5}\right) \cdot \left( 3x+7\right) = 3x^2+7x-15x-35 $$ |
| ② | Combine like terms: $$ 3x^2+ \color{blue}{7x} \color{blue}{-15x} -35 = 3x^2 \color{blue}{-8x} -35 $$ |