Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x-4}{2x}+\frac{4x}{3}+\frac{x+2}{x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8x^2+3x-12}{6x}+\frac{x+2}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8x^3+9x^2}{6x^2}\end{aligned} $$ | |
| ① | Add $ \dfrac{x-4}{2x} $ and $ \dfrac{4x}{3} $ to get $ \dfrac{ \color{purple}{ 8x^2+3x-12 } }{ 6x }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{8x^2+3x-12}{6x} $ and $ \dfrac{x+2}{x} $ to get $ \dfrac{ \color{purple}{ 8x^3+9x^2 } }{ 6x^2 }$. To add raitonal expressions, both fractions must have the same denominator. |