Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-3)(2x+1)(3x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x^2+x-6x-3)(3x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^2-5x-3)(3x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x^3+2x^2-15x^2-5x-9x-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}6x^3-13x^2-14x-3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( 2x+1\right) = 2x^2+x-6x-3 $$ |
| ② | Combine like terms: $$ 2x^2+ \color{blue}{x} \color{blue}{-6x} -3 = 2x^2 \color{blue}{-5x} -3 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{2x^2-5x-3}\right) $ by each term in $ \left( 3x+1\right) $. $$ \left( \color{blue}{2x^2-5x-3}\right) \cdot \left( 3x+1\right) = 6x^3+2x^2-15x^2-5x-9x-3 $$ |
| ④ | Combine like terms: $$ 6x^3+ \color{blue}{2x^2} \color{blue}{-15x^2} \color{red}{-5x} \color{red}{-9x} -3 = 6x^3 \color{blue}{-13x^2} \color{red}{-14x} -3 $$ |