Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-2)^4(x+2)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^4-8x^3+24x^2-32x+16)(x^3+6x^2+12x+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}x^7-2x^6-12x^5+24x^4+48x^3-96x^2-64x+128\end{aligned} $$ | |
| ① | $$ (x-2)^4 = (x-2)^2 \cdot (x-2)^2 $$ |
| ② | Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2-4x+4}\right) $ by each term in $ \left( x^2-4x+4\right) $. $$ \left( \color{blue}{x^2-4x+4}\right) \cdot \left( x^2-4x+4\right) = x^4-4x^3+4x^2-4x^3+16x^2-16x+4x^2-16x+16 $$ |
| ④ | Combine like terms: $$ x^4 \color{blue}{-4x^3} + \color{red}{4x^2} \color{blue}{-4x^3} + \color{green}{16x^2} \color{orange}{-16x} + \color{green}{4x^2} \color{orange}{-16x} +16 = \\ = x^4 \color{blue}{-8x^3} + \color{green}{24x^2} \color{orange}{-32x} +16 $$Find $ \left(x+2\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x $ and $ B = 2 $. $$ \left(x+2\right)^3 = x^3+3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 2^2+2^3 = x^3+6x^2+12x+8 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{x^4-8x^3+24x^2-32x+16}\right) $ by each term in $ \left( x^3+6x^2+12x+8\right) $. $$ \left( \color{blue}{x^4-8x^3+24x^2-32x+16}\right) \cdot \left( x^3+6x^2+12x+8\right) = \\ = x^7+6x^6+12x^5+8x^4-8x^6-48x^5-96x^4-64x^3+24x^5+144x^4+288x^3+192x^2-32x^4-192x^3-384x^2-256x+16x^3+96x^2+192x+128 $$ |
| ⑥ | Combine like terms: $$ x^7+ \color{blue}{6x^6} + \color{red}{12x^5} + \color{green}{8x^4} \color{blue}{-8x^6} \color{orange}{-48x^5} \color{blue}{-96x^4} \color{red}{-64x^3} + \color{orange}{24x^5} + \color{green}{144x^4} + \color{orange}{288x^3} + \color{blue}{192x^2} \color{green}{-32x^4} \color{red}{-192x^3} \color{green}{-384x^2} \color{orange}{-256x} + \color{red}{16x^3} + \color{green}{96x^2} + \color{orange}{192x} +128 = \\ = x^7 \color{blue}{-2x^6} \color{orange}{-12x^5} + \color{green}{24x^4} + \color{red}{48x^3} \color{green}{-96x^2} \color{orange}{-64x} +128 $$ |