Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-2)^2(x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-4x+4)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3-5x^2-4x^2+20x+4x-20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3-9x^2+24x-20\end{aligned} $$ | |
| ① | Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$ |
| ② | Multiply each term of $ \left( \color{blue}{x^2-4x+4}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{x^2-4x+4}\right) \cdot \left( x-5\right) = x^3-5x^2-4x^2+20x+4x-20 $$ |
| ③ | Combine like terms: $$ x^3 \color{blue}{-5x^2} \color{blue}{-4x^2} + \color{red}{20x} + \color{red}{4x} -20 = x^3 \color{blue}{-9x^2} + \color{red}{24x} -20 $$ |