Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-2)(x+2)(x-\frac{1}{2})(x+\frac{1}{2})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+2x-2x-4)(x-\frac{1}{2})(x+\frac{1}{2}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-4)(x-\frac{1}{2})(x+\frac{1}{2}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^2-4)\frac{2x-1}{2}\frac{2x+1}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2x^3-x^2-8x+4}{2}\frac{2x+1}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{4x^4-17x^2+4}{4}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x+2\right) = x^2+ \cancel{2x} -\cancel{2x}-4 $$ |
| ② | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{2x}} \, \, \color{blue}{ -\cancel{2x}} \,-4 = x^2-4 $$ |
| ③ | Subtract $ \dfrac{1}{2} $ from $ x $ to get $ \dfrac{ \color{purple}{ 2x-1 } }{ 2 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $x$ and $ \dfrac{1}{2} $ to get $ \dfrac{ \color{purple}{ 2x+1 } }{ 2 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $x^2-4$ by $ \dfrac{2x-1}{2} $ to get $ \dfrac{ 2x^3-x^2-8x+4 }{ 2 } $. Step 1: Write $ x^2-4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^2-4 \cdot \frac{2x-1}{2} & \xlongequal{\text{Step 1}} \frac{x^2-4}{\color{red}{1}} \cdot \frac{2x-1}{2} \xlongequal{\text{Step 2}} \frac{ \left( x^2-4 \right) \cdot \left( 2x-1 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^3-x^2-8x+4 }{ 2 } \end{aligned} $$ |
| ⑥ | Add $x$ and $ \dfrac{1}{2} $ to get $ \dfrac{ \color{purple}{ 2x+1 } }{ 2 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Multiply $ \dfrac{2x^3-x^2-8x+4}{2} $ by $ \dfrac{2x+1}{2} $ to get $ \dfrac{4x^4-17x^2+4}{4} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^3-x^2-8x+4}{2} \cdot \frac{2x+1}{2} & \xlongequal{\text{Step 1}} \frac{ \left( 2x^3-x^2-8x+4 \right) \cdot \left( 2x+1 \right) }{ 2 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 4x^4+ \cancel{2x^3} -\cancel{2x^3}-x^2-16x^2 -\cancel{8x}+ \cancel{8x}+4 }{ 4 } = \frac{4x^4-17x^2+4}{4} \end{aligned} $$ |